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Let k and n be natural numbers. Let ωk(n) denote the number 
of distinct prime factors of n with multiplicity k as studied 
by Elma and the third author [5]. We obtain asymptotic 
estimates for the first and the second moments of ωk(n) when 
restricted to the set of h-free and h-full numbers. We prove 
that ω1(n) has normal order log logn over h-free numbers, 
ωh(n) has normal order log logn over h-full numbers, and both 
of them satisfy the Erdős-Kac Theorem. Finally, we prove that 
the functions ωk(n) with 1 < k < h do not have normal order 
over h-free numbers and ωk(n) with k > h do not have normal 
order over h-full numbers.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

For a natural number n, let the prime factorization of n be given as

n = ps11 · · · psrr , (1)
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where p′is are its distinct prime factors and s′is are their respective multiplicities. Let 
ω(n) denote the total number of distinct prime factors in the factorization of n. Thus, 
ω(n) = r. The average distribution of ω(n) over natural numbers is well-known (see [13, 
Theorem 430]):

∑
n≤x

ω(n) = x log log x + B1x + O

(
x

log x

)
, (2)

where B1 is the Mertens constant given by

B1 = γ +
∑
p

(
log

(
1 − 1

p

)
+ 1

p

)
, (3)

with γ ≈ 0.57722, the Euler-Mascheroni constant, and where the sum runs over all primes 
p.

Let h ≥ 2 be an integer. Let n be a natural number with the factorization given in 
(1). We say n is h-free if si ≤ h − 1 for all i ∈ {1, · · · , r}, and we say n is h-full if si ≥ h

for all i ∈ {1, · · · , r}. Let Sh denote the set of h-free numbers and let Nh denote the set 
of all h-full numbers. Let γ0,h be the constant defined as

γ0,h :=
∏
p

(
1 + p− p1/h

p2(p1/h − 1)

)
, (4)

where the product runs over all primes p, and let Lh(r) be the convergent sum defined 
for r > h as

Lh(r) :=
∑
p

1
p(r/h)−1

(
p− p1−1/h + 1

) . (5)

In [3, Theorem 1.1 and Theorem 1.2], the authors proved the following distribution 
results for ω(n) restricted to the sets of h-free numbers and h-full numbers:

∑
n≤x
n∈Sh

ω(n) = 1
ζ(h)x log log x +

(
B1 −

∑
p

p− 1
p(ph − 1)

)
x

ζ(h) + Oh

(
x

log x

)
, (6)

and

∑
n≤x
n∈Nh

ω(n) = γ0,hx
1/h log log x + (B1 − log h + Lh(h + 1) − Lh(2h)) γ0,hx

1/h

+ Oh

(
x1/h

log x

)
, (7)
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where ζ(s) represents the classical Riemann ζ-function, and where Oh denotes big-O 
with the implied constant depending on h.

Given natural numbers n and k, let ωk(n) denote the number of distinct prime factors 
of n with multiplicity k. Note that

ω(n) =
∑
k≥1

ωk(n).

Let P (k) denote the convergent sum given by

P (k) :=
∑
p

1
pk

. (8)

Using this definition, the distributions of average value of ωk(n) over natural numbers 
were proved by Elma and the third author [5, Theorem 1.1] as

∑
n≤x

ω1(n) = x log log x + (B1 − P (2))x + O

(
x

log x

)
, (9)

and for k ≥ 2,
∑
n≤x

ωk(n) = (P (k) − P (k + 1))x + O
(
x

k+1
3k−1 (log x)2

)
. (10)

The results in (2), (9) and (10) suggest that ω(n) and ω1(n) share a similar asymptotic 
distribution with only a difference in the coefficient of the second main term, whereas 
the average distribution of ωk(n) with k ≥ 2 is smaller than that of ω(n). We verify this 
in our work as well. In the next two theorems, we show that when restricted to the set of 
h-free numbers, ω1(n) behaves similarly to ω(n) and ωk(n) with k ≥ 2 exhibits a smaller 
asymptotic size that ω(n). We begin by studying the distributions of ω1(n) over h-free 
numbers. We define the constants

C1 := B1 −
∑
p

ph−1 − 1
p(ph − 1) , (11)

and

C2 := C2
1 + C1 − ζ(2) −

∑
p

(
ph−1 − ph−2

ph − 1

)2

.

For the first and the second moment of ω1(n) over h-free numbers, we prove:

Theorem 1.1. Let x > 2 be a real number. Let h ≥ 2 be an integer. Let Sh be the set of 
h-free numbers. Then, we have
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∑
n≤x
n∈Sh

ω1(n) = 1
ζ(h)x log log x + C1

ζ(h)x + Oh

(
x

log x

)
,

and

∑
n≤x
n∈Sh

ω2
1(n) = 1

ζ(h)x(log log x)2 + 2C1 + 1
ζ(h) x log log x + C2

ζ(h)x + Oh

(
x

log x

)
.

Next, we establish the moments of ωk(n) with k ≥ 2 over h-free numbers as the 
following:

Theorem 1.2. Let k ≥ 2 and h ≥ 2 be any integers. Let Sh be the set of h-free numbers. 
For k ≤ (h − 1), we have

∑
n≤x
n∈Sh

ωk(n) =
∑
p

(
ph − ph−1

pk(ph − 1)

)
x

ζ(h) + Oh,k

(
x1/k

log x

)
,

and
∑
n≤x
n∈Sh

ω2
k(n)

=

⎛
⎝(∑

p

(
ph − ph−1

pk(ph − 1)

))2

−
∑
p

(
ph − ph−1

pk(ph − 1)

)2

+
∑
p

(
ph − ph−1

pk(ph − 1)

)⎞⎠ x

ζ(h)

+ Oh,k

(
x1/k log log x

log x

)
,

where Oh,k means that the implied constant depends on h and k.

Remark 1.1. Note that if n ∈ Sh, then ωk(n) = 0 for all k ≥ h. Thus, the distribution of 
ωk(n) with k ≥ h over the h-free numbers is zero.

Next, we prove the distribution of ωk(n) over h-full numbers. We notice that ω(n)
and ωh(n) have similar asymptotic distributions over h-full numbers. Moreover, ωk(n)
with k > h has a smaller asymptotic size than ω(n). We can thus infer that the smallest 
power of primes defining the subset of h-full numbers contributes to the main term 
for the asymptotic distribution of ω(n) over the subset. This inference also satisfies 
the behavior observed over h-free numbers. The set of h-free numbers includes the first 
power of primes, and it is observed that ω(n) and ω1(n), which counts prime factors with 
multiplicity 1, satisfy similar distributions over h-free numbers. To prove the distribution 
over h-full numbers, we define two new constants
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D1 := B1 − log h− Lh(2h), (12)

and

D2 := D2
1 + D1 − ζ(2) −

∑
p

(
p1/h − 1

p1+1/h − p + p1/h

)2

, (13)

where Lh(·) is defined in (5). For the first moments of ωk(n) over h-full numbers, we 
prove:

Theorem 1.3. Let k ≥ 2 and h ≥ 2 be any integers. Let Nh be the set of h-full numbers. 
Then, we have

∑
n≤x
n∈Nh

ωh(n) = γ0,hx
1/h log log x + D1γ0,hx

1/h + Oh

(
x1/h

log x

)
,

where γ0,h is defined in (4).
Moreover, we have

∑
n≤x
n∈Nh

ωh+1(n) = (Lh(h + 1) − Lh(h + 2)) γ0,hx
1/h + Oh

(
x1/(h+1) log log x

)
,

and for k > h + 1, we have
∑
n≤x
n∈Nh

ωk(n) = (Lh(k) − Lh(k + 1)) γ0,hx
1/h + Oh,k

(
x1/(h+1)

)
.

For the second moments, we obtain:

Theorem 1.4. Under the assumptions as in Theorem 1.3, we have
∑
n≤x
n∈Nh

ω2
h(n) = γ0,hx

1/h(log log x)2 + (2D1 + 1) γ0,hx
1/h log log x + D2γ0,hx

1/h

+ Oh

(
x1/h log log x

log x

)
.

Moreover, for k = h + 1, we have,
∑
n≤x
n∈Nh

ω2
h+1(n)

=
(

(Lh(h + 1) − Lh(h + 2))2 + Lh(h + 1) − Lh(h + 2)



S. Das et al. / Journal of Number Theory 267 (2025) 176–201 181
−
∑
p

(
p1/h − 1

p1+2/h − p1+1/h + p2/h

)2 )
γ0,hx

1/h + Oh

(
x1/(h+1)(log log x)2

)
,

and for k > h + 1, we have
∑
n≤x
n∈Nh

ω2
k(n)

=
(

(Lh(k) − Lh(k + 1))2 + Lh(k) − Lh(k + 1)

−
∑
p

(
p1/h − 1

p(k+1)/h − pk/h + p(k+1−h)/h

)2 )
γ0,hx

1/h + Oh,k

(
x1/(h+1)

)
.

Remark 1.2. Note that if n ∈ Nh, then ωk(n) = 0 for all k ≤ (h − 1). Thus, the 
distribution of ωk(n) over h-full numbers is zero for k ≤ (h − 1).

We recall the definition of normal order over a subset of natural numbers as mentioned 
in [3]. Let S ⊆ N and S(x) denote the set of natural numbers belonging to S and less 
than or equal to x. Let f, F : S → R≥0 be two functions such that F is non-decreasing. 
Then, f(n) is said to have normal order F (n) over S if for any ε > 0, the number of 
n ∈ S(x) that do not satisfy the inequality

(1 − ε)F (n) ≤ f(n) ≤ (1 + ε)F (n)

is o(S(x)) as x → ∞. Hardy and Ramanujan [12] proved that ω(n) has the normal 
order log logn over naturals. In fact, the authors in [3] showed that ω(n) has the normal 
order log logn over h-free and over h-full numbers as well. Note that the set of h-free 
numbers has positive density, and both ω and ω1 behave asymptotically similar over h-
free numbers. Thus, the proof of ω1(n) having normal order log logn over h-free numbers 
follows from the classical case. In particular, one can establish that for any ε > 0, the 
number of n ∈ Sh(x) that do not satisfy the inequality

(1 − ε) log logn ≤ ω1(n) ≤ (1 + ε) log logn

is o(|Sh(x)|) as x → ∞. On the other hand, the set of h-full numbers has density 0, and 
thus the proof of normal order of ωh does not follow from the classical result. However, 
since ω and ωh behave asymptotically similar over h-full numbers, the proof of ωh(n)
having normal order log logn over h-full numbers can be inferred in a manner analogous 
to the proof presented in [3, Theorem 1.3] for ω(n). In particular, one can establish that 
for any ε > 0, the number of n ∈ Nh(x) that do not satisfy the inequality

(1 − ε) log logn ≤ ωh(n) ≤ (1 + ε) log logn
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is o(|Nh(x)|) as x → ∞.
In [6], Erdős and Kac established a pioneering result that ω(n) obeys the Gaussian 

distribution over naturals. In particular, they proved

lim
x→∞

1
x

∣∣∣∣
{
n ≤ x : ω(n) − log logn√

log logn
≤ a

} ∣∣∣∣ = Φ(a),

where

Φ(a) = 1√
2π

a∫
−∞

e−u2/2 du. (14)

Following their work, various approaches to the Erdős-Kac theorem have been pursued, 
for example, see [2,7–11,15]. In [4], the authors showed that ω(n) satisfies the Erdős-Kac 
theorem over the subsets of h-free and h-full ideals of a number field, thus in particular, 
over h-free and h-full numbers. We extend this result to ω1(n) over h-free numbers and 
ωh(n) over h-full numbers. We prove the following two results:

Theorem 1.5. Let x > 2 be any real number and h ≥ 2 be any integer. Let Sh(x) denote 
the set of h-free numbers less than or equal to x. Then for a ∈ R, we have

lim
x→∞

1
|Sh(x)|

∣∣∣∣
{
n ∈ Sh(x) : ω1(n) − log logn√

log logn
≤ a

} ∣∣∣∣ = Φ(a),

where Φ(a) is defined in (14).

Theorem 1.6. Let x > 2 be any real number and h ≥ 2 be any integer. Let Nh(x) denote 
the set of h-free numbers less than or equal to x. Then for a ∈ R, we have

lim
x→∞

1
|Nh(x)|

∣∣∣∣
{
n ∈ Nh(x) : ωh(n) − log logn√

log log n
≤ a

} ∣∣∣∣ = Φ(a),

where Φ(a) is defined in (14).

Unlike ω1(n), we observe that ωk(n) for 1 < k < h does not have a normal order. This 
goes in accordance with the findings of Elma and the third author [5] where they proved 
that ωk(n) for k > 1 does not have a normal order over natural numbers. In particular, 
we prove:

Theorem 1.7. For any integer h ≥ 2 and any integer k satisfying 1 < k < h, the function 
ωk(n) does not have normal order F (n) for any non-decreasing function F : Sh → R≥0.

Finally, we show that ωk(n) for k > h does not have a normal order over h-full 
numbers. In particular, we prove:
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Theorem 1.8. For any integer h ≥ 2 and any integer k > h, the function ωk(n) does not 
have normal order F (n) for any non-decreasing function F : Nh → R≥0.

For a natural number n, let Ω(n) denote the number of prime factors of n counted 
with multiplicity. In particular, for the representation of n given in (1), Ω(n) =

∑r
i=1 si. 

Let Ωk(n) be the number of prime factors of f with a given multiplicity k � 1. Note 
that Ωk(n) = k · ωk(n) and Ω(n) =

∑
k�1 Ωk(n) for all n ∈ N. One can deduce similar 

results for Ωk(n) as our results in this paper. In particular, one can prove that Ω1(n)
has normal order log logn over h-free numbers, Ωh(n) has normal order h log logn over 
h-full numbers, and both satisfy the Erdős-Kac Theorem. One can also prove that the 
functions Ωk(n) with 1 < k < h do not have normal order over h-free numbers and Ωk(n)
with k > h do not have normal order over h-full numbers.

2. Lemmata

First, we recall the following results necessary for our study:

Lemma 2.1. [1, Lemma 1.2] If k > 1 be any real number. Then

∑
p≥x

1
pk

= 1
(k − 1)xk−1(log x) + O

(
1

xk−1(log x)2

)
.

Lemma 2.2. [3, Lemma 2.2] Let α > 0 be any real number satisfying 0 < α < 1. Then

∑
p≤x

1
pα

= Oα

(
x1−α

log x

)
.

Lemma 2.3. Let h ≥ 2 be a fixed integer. Let y > 2 and r > h be fixed real numbers. 
Then

∑
p≤y

1
pr/h

(
1 − p−1/h + p−1

) = Lh(r) + Oh,r

(
1

y
r
h−1(log y)

)
,

where Lh(r) is the convergent sum defined in (5) as

Lh(r) :=
∑
p

1
p(r/h)−1

(
p− p1−1/h + 1

) ,
and Oh,r means that the implied constant depends on both h and r.

Proof. Note that

∑
p≤y

1
pr/h

(
1 − p−1/h + p−1

) = Lh(r) + Oh

(∑
p>y

1
pr/h

)
.
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Applying Lemma 2.1 with k = r/h completes the proof. �
Lemma 2.4. [16, Exercise 9.4.4] For x > 2, we have

∑
p≤x/2

1
p log(x/p) = O

(
log log x

log x

)
.

Lemma 2.5. [3, Lemma 2.4] Let p and q denote prime numbers. For x > 2, we have

∑
p,q

pq≤x

1
pq

= (log log x)2 + 2B1 log log x + B2
1 − ζ(2) + O

(
log log x

log x

)
.

Next, we recall the following results regarding the density of certain sequences of 
h-free and h-full numbers:

Lemma 2.6. [14, Lemma 3] Let x > 2 be a real number. Let h ≥ 2 be an integer. Let Sh

be the set of h-free numbers. Let q1, · · · , qr be prime numbers. Then, we have

∑
n≤x,n∈Sh

(n,q1)=···=(n,qr)=1

1 =
r∏

i=1

(
qhi − qh−1

i

qhi − 1

)
x

ζ(h) + Oh

(
2rx1/h

)
.

Let Cr,h be a constant dependent on r and h, defined as

Cr,h :=
2h−1∏

j=h,j �=r

ζ(j/r),

and let φh(s) be a complex valued function defined on 
(s) > 1/(2h + 3), satisfying the 
equation

∏
p

⎛
⎝1 − p−(2h+2)s +

(3h2+h−2)/2∑
r=2h+3

ar,hp
−rs

⎞
⎠ = ζ−1((2h + 2)s)φh(s),

where ar,h satisfying the identity

(
1 + vh

1 − v

)
(1 − vh) · · · (1 − v2h−1) = 1 − v2h+2 +

(3h2+h−2)/2∑
2h+3

ar,hv
r.

Lemma 2.7. [3, Lemma 4.1] Let q1, q2, · · · , qr be distinct primes. Let

Aq1,··· ,qr,h(x) :=
∑

n≤x,n∈Nh

1. (15)
(n,q1)=···=(n,qr)=1
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For any x > 2, we have

Aq1,··· ,qr,h(x) = γq1,··· ,qr,0,hx
1
h + γq1,··· ,qr,1,hx

1
h+1 + · · ·

+ γq1,··· ,qr,h−1,hx
1

2h−1 + Oh (xηh) ,

where 1
2h+2 < ηh < 1

2h−1 , and for i ∈ {0, 1, · · · , h − 1},

γq1,··· ,qr,i,h = Ch+i,h
φh(1/(h + i))

ζ((2h + 2)/(h + i))
(∏r

j=1

(
1 + q

−h/(h+i)
j

1−q
−1/(h+i)
j

)) .

Lemma 2.8. [14, Lemma 17] Let q be a prime and k > h be integers. Then, for any small 
ε > 0, we have

∑
n≤x

n∈Nh∩Sk,(n,q)=1

1 = 1 − q−1/h

1 − q−1/h + q−1 − q−k/h
ηh,kx

1/h + O
(
x

2h+1
2h(h+1)+ε

)
,

where ηh,k is the convergent product given by

ηh,k =
∏
p

(
1 − 1

p

)(
1 − p−1/h + p−1 − p−k/h

1 − p−1/h

)
. (16)

3. Distribution of ωk(n) over h-free numbers

In this section, we study the distribution of the average value of ωk(n) over h-free 
numbers.

3.1. For ω1(n)

Proof of Theorem 1.1. Writing n = py with (y, p) = 1, we obtain
∑
n≤x
n∈Sh

ω1(n) =
∑
n≤x
n∈Sh

∑
p

p‖n

1 =
∑
p≤x

∑
n≤x

n∈Sh,p‖n

1 =
∑
p≤x

∑
y≤x/p

y∈Sh,(y,p)=1

1.

Now, first using Lemma 2.6 for a single prime p to the above and then using Lemma 2.2, 
we obtain

∑
n≤x
n∈Sh

ω1(n) =
∑
p≤x

(
ph − ph−1

p(ph − 1)

)
x

ζ(h) + Oh

(
x

log x

)
.

Using Lemma 2.1, p
h−ph−1

h = 1 − ph−1−1
h , and Mertens’ second theorem given by
p(p −1) p p(p −1)
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∑
p≤x

1
p

= log log x + B1 + O

(
1

log x

)
, (17)

we obtain

∑
p≤x

(
ph − ph−1

p(ph − 1)

)
= log log x + B1 −

∑
p

ph−1 − 1
p(ph − 1) + Oh

(
1

log x

)
. (18)

Plugging the above back into the previous equation completes the first part of the proof.
Next, note that

∑
n≤x
n∈Sh

ω2
1(n) =

∑
n≤x
n∈Sh

⎛
⎜⎝∑

p
p‖n

1

⎞
⎟⎠

2

=
∑
n≤x
n∈Sh

ω1(n) +
∑
n≤x
n∈Sh

∑
p,q

p‖n,q‖n,p �=q

1, (19)

where p and q above denote primes. The first sum on the right-hand side above is the 
first moment estimated above and for the second sum, using Lemma 2.6 for two primes 
p and q, we obtain

∑
n≤x
n∈Sh

∑
p,q

p‖n,q‖n,p �=q

1 =
∑
p,q

p�=q,pq≤x

((
ph − ph−1

p(ph − 1)

)(
qh − qh−1

q(qh − 1)

)
x

ζ(h) + Oh

(
x1/h

(pq)1/h

))
.

(20)
Next, we bound the above error term using Lemma 2.2 with α = 1/h and Lemma 2.4 as 
the following

x1/h
∑
p,q

p�=q,pq≤x

1
(pq)1/h

= x1/h
∑

p≤x/2

1
p1/h

∑
q≤x/p

1
q1/h

�h x
∑

p≤x/2

(
1

p log(x/p)

)

�h
x log log x

log x . (21)

Now, we estimate the main term in (20). First, we can divide the sum as

∑
p,q

p�=q,pq≤x

(
ph − ph−1

p(ph − 1)

)(
qh − qh−1

q(qh − 1)

)

=
∑
p,q

pq≤x

(
ph − ph−1

p(ph − 1)

)(
qh − qh−1

q(qh − 1)

)
−

∑
p

p≤x1/2

(
ph − ph−1

p(ph − 1)

)2

. (22)

The second sum on the right-hand side above is estimated using Lemma 2.1 as
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∑
p

p≤x1/2

(
ph − ph−1

p(ph − 1)

)2

=
∑
p

(
ph − ph−1

p(ph − 1)

)2

+ O

(
1

x1/2 log x

)
. (23)

Using p
h−ph−1

p(ph−1) = 1
p − ph−1−1

p(ph−1) , and the symmetry in p and q, we have

∑
p,q

pq≤x

(
ph − ph−1

p(ph − 1)

)(
qh − qh−1

q(qh − 1)

)

=
∑
p,q

pq≤x

1
pq

− 2
∑
p,q

pq≤x

1
p

(
qh−1 − 1
q(qh − 1)

)
+

∑
p,q

pq≤x

(
ph−1 − 1
p(ph − 1)

)(
qh−1 − 1
q(qh − 1)

)
. (24)

We estimate the sums on the right-hand side above separately. For the first sum, we 
use Lemma 2.5. For the second sum, we use Lemma 2.1, and then (17) and the classical 
prime number theorem given as

∑
p≤x

1 = x

log x +
(

x

(log x)2

)
(25)

to obtain

∑
p,q

pq≤x

1
p

(
qh−1 − 1
q(qh − 1)

)

=
∑
p

p≤x/2

1
p

(∑
p

(
ph−1 − 1
p(ph − 1)

)
+ O

(
1

(x/p) log(x/p)

))

=
∑
p

(
ph−1 − 1
p(ph − 1)

)
(log log x + B1) + O

(
1

log x

)
. (26)

For the third sum, we use Lemma 2.1 twice and then Lemma 2.4 to obtain

∑
p,q

pq≤x

(
ph−1 − 1
p(ph − 1)

)(
qh−1 − 1
q(qh − 1)

)
=

(∑
p

(
ph−1 − 1
p(ph − 1)

))2

+ O

(
log log x
x log x

)
. (27)

Combining (24), (26), (27), and Lemma 2.5, we obtain

∑
p,q

pq≤x

(
ph − ph−1

p(ph − 1)

)(
qh − qh−1

q(qh − 1)

)

= (log log x)2 + 2B1 log log x + B2
1 − ζ(2) − 2

∑(
ph−1 − 1
p(ph − 1)

)
(log log x + B1)
p
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+
(∑

p

ph−1 − 1
p(ph − 1)

)2

+ O

(
log log x

log x

)
.

Combining (19), (20), (21), (22) and (23), and then combining it further with the above 
equation and the first moment of ω1(n) over h-free numbers, we obtain the second mo-
ment estimate. �
3.2. For ωk(n) with k ≥ 2

Proof of Theorem 1.2. Using n = pky with (p, y) = 1, we obtain
∑
n≤x
n∈Sh

ωk(n) =
∑
n≤x
n∈Sh

∑
p|n
pk‖n

1 =
∑

p≤x1/k

∑
n≤x

n∈Sh,p
k‖n

1 =
∑

p≤x1/k

∑
y≤x/pk

y∈Sh,(p,y)=1

1. (28)

Using Lemma 2.6 for a single prime p, we obtain

∑
p≤x1/k

∑
y≤x/pk

y∈Sh,(p,y)=1

1 =
∑

p≤x1/k

(
1

ζ(h)

(
ph − ph−1

ph − 1

)
x

pk
+ Oh

(
x1/h

pk/h

))

=
∑
p

(
ph − ph−1

pk(ph − 1)

)
x

ζ(h) +
∑

p>x1/k

(
ph − ph−1

pk(ph − 1)

)
x

ζ(h)

+ Oh

⎛
⎝x1/h

∑
p≤x1/k

1
pk/h

⎞
⎠ . (29)

Using Lemma 2.1, we estimate the second sum in the above equation as

∑
p>x1/k

(
ph − ph−1

pk(ph − 1)

)
x

ζ(h) �h,k
x1/k

log x. (30)

Using Lemma 2.2 with α = k/h, we obtain

∑
p≤x1/k

1
pk/h

�h,k
x

1
k− 1

h

log x . (31)

Combining (28), (29), (30), and (31) completes the first part of the proof.
For the second moment, note that

∑
n≤x

ω2
k(n) =

∑
n≤x

⎛
⎜⎜⎝∑

p
k

1

⎞
⎟⎟⎠

2

=
∑
n≤x

ωk(n) +
∑
n≤x

∑
p,q

k k

1, (32)
n∈Sh n∈Sh p ‖n n∈Sh n∈Sh p ‖n,q ‖n,p �=q
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where p and q above denote primes. The first sum on the right-hand side above is the 
first moment studied above, and for the second sum, using Lemma 2.6, we obtain

∑
n≤x
n∈Sh

∑
p,q

pk‖n,qk‖n,p �=q

1 =
∑
p,q

p�=q,pq≤x1/k

((
ph − ph−1

pk(ph − 1)

)(
qh − qh−1

qk(qh − 1)

)
x

ζ(h)

+ Oh

(
x1/h

(pq)k/h

))
. (33)

Next, we bound the above error term. We employ Lemma 2.2 with α = k/h, and with 
α = 2k/h when 2k < h, (17) when 2k = h, and 

∑
p 1/p2k/h = O(1) when 2k > h below 

to obtain

x1/h
∑
p,q

p�=q,pq≤x1/k

1
(pq)k/h

= x1/h
∑
p,q

pq≤x1/k

1
(pq)k/h

− x1/h
∑

p≤x1/2k

1
p2k/h

�k,h
x

1
k log log x

log x . (34)

Now, we estimate the main term in (33). First, we can divide the sum as

∑
p,q

p�=q,pq≤x1/k

(
ph − ph−1

pk(ph − 1)

)(
qh − qh−1

qk(qh − 1)

)

=
∑
p,q

pq≤x1/k

(
ph − ph−1

pk(ph − 1)

)(
qh − qh−1

qk(qh − 1)

)
−

∑
p

p≤x1/2k

(
ph − ph−1

pk(ph − 1)

)2

. (35)

The second sum on the right-hand side above is estimated using Lemma 2.1 as

∑
p

p≤x1/2k

(
ph − ph−1

pk(ph − 1)

)2

=
∑
p

(
ph − ph−1

pk(ph − 1)

)2

+ Ok

(
1

x1− 1
2k log x

)
. (36)

For the first sum, we employ Lemma 2.1, then Lemma 2.4, and then again Lemma 2.1
to obtain

∑
p,q

pq≤x1/k

(
ph − ph−1

pk(ph − 1)

)(
qh − qh−1

qk(qh − 1)

)

=
∑
p
1/k

(
ph − ph−1

pk(ph − 1)

)(∑
p

(
ph − ph−1

pk(ph − 1)

))
+ Ok

⎛
⎜⎜⎝x

1
k−1

∑
p
1/k

1
p log(x1/k/p)

⎞
⎟⎟⎠
p≤x /2 p≤x /2
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=
(∑

p

(
ph − ph−1

pk(ph − 1)

))2

+ Ok

(
x

1
k−1

log x

)
+ Ok

(
x

1
k−1 log log x

log x

)
.

Combining the last three results, we obtain

∑
p,q

p�=q,pq≤x1/k

(
ph − ph−1

pk(ph − 1)

)(
qh − qh−1

qk(qh − 1)

)
x

ζ(h)

=
(∑

p

(
ph − ph−1

pk(ph − 1)

))2

−
∑
p

(
ph − ph−1

pk(ph − 1)

)2

+ Oh,k

(
x1/k log log x

log x

)
.

Combining the above with (32), (33), and the first moment of ωk(n) studied in the first 
part of the proof, we obtain the required result. �
4. Distribution of ωk(n) over h-full numbers

In this section, we study the distribution of the function ωk(n) over h-full numbers. 
The definition of h-full numbers enforces that the distribution of ωk(n) over h-full num-
bers is zero for k ≤ h − 1. Thus, we only need to study the case k ≥ h.

4.1. The first moment of ωk(n) over h-full numbers

Proof of Theorem 1.3. Note that
∑
n≤x
n∈Nh

ωk(n) =
∑
n≤x
n∈Nh

∑
p|n
pk‖n

1 =
∑

p≤x1/k

∑
n≤x

n∈Nh,p
k‖n

1 =
∑

p≤x1/k

Ap,h(x/pk), (37)

where Ap,h(y) is defined in (15). Thus, applying Lemma 2.7 with a single prime p, we 
have

∑
n≤x
n∈Nh

ωk(n) = γ0,hx
1/h

∑
p≤x1/k

1 − p−1/h

pk/h
(
1 − p−1/h + p−1

) + Oh

⎛
⎝x1/(h+1)

∑
p≤x1/k

1
pk/(h+1)

⎞
⎠ .

(38)

The above formula for k = h yields

∑
n≤x
n∈Nh

ωh(n) = γ0,hx
1/h

( ∑
p≤x1/h

1
p
(
1 − p−1/h + p−1

)

−
∑

1/h

1
p1+1/h

(
1 − p−1/h + p−1

)
)

p≤x
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+ Oh

⎛
⎝x1/(h+1)

∑
p≤x1/h

1
ph/(h+1)

⎞
⎠ .

By [3, (42)], we have

∑
p≤x1/h

1
p
(
1 − p−1/h + p−1

) = log log x+B1 − log h+Lh(h+ 1)−Lh(2h) +Oh

(
1

log x

)
.

(39)
Thus, using Lemma 2.2 with α = h/(h +1), and Lemma 2.3 with y = x1/h and r = h +1, 
we obtain

∑
n≤x
n∈Nh

ωh(n) = γ0,hx
1/h log log x +

(
B1 − log h− Lh(2h)

)
γ0,hx

1/h + Oh

(
x1/h

log x

)
.

Now, let’s consider the case k > h. Rewriting (38) for k > h and using Lemma 2.3, we 
obtain

∑
n≤x
n∈Nh

ωk(n) = γ0,hx
1/h

(
Lh(k) − Lh(k + 1) + Oh,k

(
1

x
1
h− 1

k (log x)

))

+ Oh

⎛
⎝x1/(h+1)

∑
p≤x1/k

1
pk/(h+1)

⎞
⎠ .

Note that, for k = h + 1,

∑
p≤x1/k

1
pk/(h+1) = O(log log x)

and for k > h + 1,

∑
p≤x1/k

1
pk/(h+1) = Ok(1).

Combining the above results, we obtain
∑
n≤x
n∈Nh

ωh+1(n) = (Lh(h + 1) − Lh(h + 2)) γ0,hx
1/h + Oh

(
x1/(h+1) log log x

)
,

and for k > h + 1, we obtain
∑
n≤x

ωk(n) = (Lh(k) − Lh(k + 1)) γ0,hx
1/h + Oh,k

(
x1/(h+1)

)
.

n∈Nh
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This completes the proof. �
4.2. The second moment of ωk(n) over h-full numbers

Proof of Theorem 1.4. Note that, for k ≥ h, we have

∑
n≤x
n∈Nh

ω2
k(n) =

∑
n≤x
n∈Nh

⎛
⎜⎜⎝∑

p
pk‖n

1

⎞
⎟⎟⎠

2

=
∑
n≤x
n∈Nh

ωk(n) +
∑
n≤x
n∈Nh

∑
p,q

pk‖n,qk‖n,p �=q

1, (40)

where p and q above denote primes. The first sum on the right-hand side above can be 
estimated using Theorem 1.3 and for the second sum, we first rewrite the sum, and use 
Lemma 2.7 with two distinct primes p and q to obtain

∑
n≤x
n∈Nh

∑
p,q

pk‖n,qk‖n,p �=q

1

=
∑
p,q

p�=q,pq≤x1/k

∑
n≤x/(pq)k

n∈Nh
(p,n)=(q,n)=1

1

= γ0,hx
1/h

∑
p,q

pq≤x1/k

1
pk/h

(
1 + p−1

1−p−1/h

) 1
qk/h

(
1 + q−1

1−q−1/h

)

− γ0,hx
1/h

∑
p

⎛
⎝ 1
pk/h

(
1 + p−1

1−p−1/h

)
⎞
⎠

2

+ Oh,k

(
x1/2k

log x

)

+ Oh

⎛
⎜⎜⎝x

1
h+1

∑
p,q

p�=q,pq≤x1/h

1
pk/(h+1)qk/(h+1)

⎞
⎟⎟⎠ . (41)

For bounding the sum in the error term above, we use Lemma 2.2 and Lemma 2.4 for 
k = h, Lemma 2.5 for k = h + 1, and 

∑
p,q

1
(pq)k/(h+1) = O(1) for k > h + 1. Thus, we 

obtain

x
1

h+1
∑
p,q

p�=q,pq≤x1/h

1
pk/(h+1)qk/(h+1) �h,k

⎧⎪⎪⎨
⎪⎪⎩

x1/h log log x
log x if k = h,

x1/(h+1)(log log x)2 if k = h + 1, and
x1/(h+1) if k > h + 1.

(42)
We study the first sum in the main term in (41) by dividing it into cases. We begin with 
k = h and estimate the sum
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∑
p,q

pq≤x1/h

1 − p−1/h

p
(
1 − p−1/h + p−1

) 1 − q−1/h

q
(
1 − q−1/h + q−1

) .

Note that

1 − p−1/h

p
(
1 − p−1/h + p−1

) = 1
p
− 1

p2
(
1 − p−1/h + p−1

) .
Using this, a similar result for a prime q and the symmetry in primes p and q, we expand 
the previous sum as

∑
p,q

pq≤x1/h

1 − p−1/h

p
(
1 − p−1/h + p−1

) 1 − q−1/h

q
(
1 − q−1/h + q−1

)

=
∑
p,q

pq≤x1/h

1
pq

− 2
∑
p,q

pq≤x1/h

1
pq2

(
1 − q−1/h + q−1

)

+
∑
p,q

pq≤x1/h

1
p2

(
1 − p−1/h + p−1

) 1
q2

(
1 − q−1/h + q−1

) .

We bound the first sum above using Lemma 2.4. For the second sum, we have

∑
p,q

pq≤x1/h

1
pq2

(
1 − q−1/h + q−1

)

=
∑
p

p≤x1/h/2

1
p

∑
q

q≤x1/h/p

1
q2

(
1 − q−1/h + q−1

)

= Lh(2h) (log log x + B1 − log h) + Oh

(
1

log x

)
.

Similarly, for the third sum, we obtain

∑
p,q

pq≤x1/h

1
p2

(
1 − p−1/h + p−1

) 1
q2

(
1 − q−1/h + q−1

) = (Lh(2h))2 + Oh

(
log log x
x1/h log x

)
.

Combining the last three results with Lemma 2.4, we obtain

∑
p,q

pq≤x1/h

1 − p−1/h

p
(
1 − p−1/h + p−1

) 1 − q−1/h

q
(
1 − q−1/h + q−1

)

= (log log x− log h)2 + 2B1(log log x− log h) + B2
1 − ζ(2)
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− 2 (Lh(2h) (log log x + B1 − log h)) + (Lh(2h))2 + Oh

(
log log x

log x

)
.

Combining the above with (40), (41), and (42) for k = h and using Theorem 1.3, we 
obtain the second moment for ωh(n) over h-full numbers.

Now, we focus on the case k ≥ h + 1. Using the definition of Lh(r) (5), we obtain

∑
p,q

pq≤x1/k

1 − p−1/h

pk/h
(
1 − p−1/h + p−1

) 1 − q−1/h

qk/h
(
1 − q−1/h + q−1

)

= (Lh(k) − Lh(k + 1))2 + Oh,k

(
x

1
k− 1

h log log x
log x

)
.

Combining the above with (40), (41), and (42) for k ≥ h + 1 and using Theorem 1.3, for 
k ≥ h + 1, we obtain the required second moments for ωk(n) for k ≥ h + 1 over h-full 
numbers. This completes the proof. �
5. The Erdős-Kac theorems

In this section, we establish the Erdős-Kac theorem for ω1(n) over h-free numbers and 
for ωh(n) over h-full numbers. To do this, we employ ideas from [5, Proof of Theorem 
1.3]. We prove the following two theorems:

Proof of Theorem 1.5. For an arithmetic function f and a natural number n ≥ 3, let 
rf (n) be the ratio

rf (n) := f(n) − log logn√
log log n

. (43)

In this proof, we will be using f to represent ω and ω1 when necessary. For a ∈ R and a 
subset S of natural numbers, let S(x) denote the set of elements of S up to x, and

D(f, S, x, a) := 1
|S(x)| |{n ∈ S(x) : rf (n) ≤ a}| (44)

be the density function for sufficiently large x. Since ω1(n) ≤ ω(n), thus rω1(n) ≤ rω(n)
for all n ≥ 3. Therefore using S = Sh,

D(ω,Sh, x, a) ≤ D(ω1,Sh, x, a)

for all x ≥ 3. Thus, by the Erdős-Kac theorem for ω(n) over h-free numbers (see [4, 
Theorem 1.4]), we have

Φ(a) ≤ lim inf D(ω1,Sh, x, a). (45)

x→∞
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For any ε > 0, we define the set

A(Sh, x, ε) :=
{
n ∈ Sh(x) : ω(n) − ω1(n)√

log log n
≤ ε

}
.

Let Ac(Sh, x, ε) denote the complement of A(Sh, x, ε) inside Sh(x). Note that

rω1(n) = rω(n) + ω(n) − ω1(n)√
log logn

.

Thus, using the definition of A(Sh, x, ε), we obtain

{n ∈ Sh(x) : rω1 ≤ a} =
{
n ∈ Sh(x) : rω(n) + ω1(n) − ω(n)√

log log n
≤ a

}

=
{
n ∈ A(Sh, x, ε) : rω(n) + ω1(n) − ω(n)√

log log n
≤ a

}

∪
{
n ∈ Ac(Sh, x, ε) : rω(n) + ω1(n) − ω(n)√

log log n
≤ a

}

⊆ {n ∈ Sh(x) : rω(n) ≤ a + ε} ∪Ac(Sh, x, ε).

Then, by the definition of D(f, Sh, x, a)), we have

D(ω1,Sh, x, a) ≤ D(ω,Sh, x, a + ε) + |Ac(Sh, x, ε)|
|Sh(x)| . (46)

We intend to show that the second summand on the right-hand side above goes to 0 as 
x → ∞. By (6) and Theorem 1.1, we have

∑
n∈Sh(x)

(ω(n) − ω1(n)) � x

ζ(h) .

Additionally,
∑

n∈Sh(x)

(ω(n) − ω1(n)) ≥
∑

x
log x≤n≤x

n∈Ac(Sh,x,ε)

(ω(n) − ω1(n))

> ε
∑

x
log x≤n≤x

n∈Ac(Sh,x,ε)

√
log logn

≥ ε
√

log log(x/ log x) |{n ≥ x/ log x : n ∈ Ac(Sh, x, ε)}|.

The above two results imply

|{n ≥ x/ log x : n ∈ Ac(Sh, x, ε)}| �
1

ε · ζ(h)
x√ ,
log log(x/ log x)
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where the right-hand side is o(x). Since |Sh(x/ log x)| is also o(x) and |Sh(x)| 
 x/ζ(h), 
we obtain

lim
x→∞

|Ac(Sh, x, ε)|
|Sh(x)| = 0.

Finally, taking the limits as x → ∞ on both sides of (46), and using the above with the 
Erdős-Kac theorem for ω(n) over h-free numbers, we obtain

lim sup
x→∞

D(ω1,Sh, x, a) ≤ Φ(a + ε).

Since, ε > 0 is arbitrary, combining the above with (45) yields

lim
x→∞

D(ω1,Sh, x, a) = Φ(a).

This completes the proof. �
Proof of Theorem 1.6. Recall the definitions for rf (n) and D(f, S, x, a) from (43) and 
(44) respectively. In this proof, we will be using S = Nh and f to represent ω and ωh

when necessary.
Since ωh(n) ≤ ω(n), thus rωh

(n) ≤ rω(n) for all n ≥ 3. Therefore using S = Nh,

D(ω,Nh, x, a) ≤ D(ωh,Nh, x, a)

for all x ≥ 3. Thus, by the Erdős-Kac theorem for ω(n) over h-full numbers (see [4, 
Theorem 1.5], we have

Φ(a) ≤ lim inf
x→∞

D(ωh,Nh, x, a). (47)

For any ε > 0, we define the set

Ah(Nh, x, ε) :=
{
n ∈ Nh : ω(n) − ωh(n)√

log log n
≤ ε

}
.

Let Ac
h(Nh, x, ε) denote the complement of Ah(Nh, x, ε) inside Nh(x). Note that

rωh
(n) = rω(n) + ω(n) − ωh(n)√

log log n
.

Thus, we obtain
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{n ∈ Nh(x) : rωh
≤ a} =

{
n ∈ Nh(x) : rω(n) + ωh(n) − ω(n)√

log log n
≤ a

}

=
{
n ∈ Ah(Nh, x, ε) : rω(n) + ωh(n) − ω(n)√

log logn
≤ a

}

∪
{
n ∈ Ac

h(Nh, x, ε) : rω(n) + ωh(n) − ω(n)√
log logn

≤ a

}

⊆ {n ∈ Nh(x) : rω(n) ≤ a + ε} ∪Ac
h(Nh, x, ε).

Then, by the definition of D(f, Nh, x, a), we have

D(ωh,Nh, x, a) ≤ D(ω,Nh, x, a + ε) + |Ac
h(Nh, x, ε)|
|Nh(x)| . (48)

We again intend to show that the second summand on the right-hand side above goes 
to 0 as x → ∞. By (7) and Theorem 1.3, we have

∑
n∈Nh(x)

(ω(n) − ωh(n)) �h x1/h.

Additionally,
∑

n∈Nh(x)

(ω(n) − ωh(n)) ≥
∑

x
log x≤n≤x

n∈Ac
h(Nh,x,ε)

(ω(n) − ωh(n))

> ε
∑

x
log x≤n≤x

n∈Ac(Nh,x,ε)

√
log logn

≥ ε
√

log log(x/ log x) |{n ≥ x/ log x : n ∈ Ac
h(Nh, x, ε)}|.

The above two results imply

|{n ≥ x/ log x : n ∈ Ac
h(Nh, x, ε)}| �h

1
ε

x1/h√
log log(x/ log x)

,

where the right-hand side is o(x1/h). Since the size of the set |Nh(x/ log x)| is also o(x1/h)
and |Nh(x)| 
 γ0,hx

1/h, we obtain

lim
x→∞

|Ac
h(Nh, x, ε)|
|Nh(x)| = 0.

Finally, taking the limits as x → ∞ on both sides of (48), and using the above with the 
Erdős-Kac theorem for ω(n) over h-full numbers, we obtain

lim supD(ωh,Nh, x, a) ≤ Φ(a + ε).

x→∞
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Since, ε > 0 is arbitrary, combining the above with (47) yields

lim
x→∞

D(ωh,Nh, x, a) = Φ(a).

This completes the proof. �
6. No normal orders

In this section, we prove Theorem 1.7 and Theorem 1.8. The former establishes that 
the functions ωk(n) with 1 < k < h do not have normal order over h-free numbers, 
and the latter proves that ωk(n) with k > h do not have normal order over h-full 
numbers.

Proof of Theorem 1.7. We first assume that F (n) is not identically 0. Then, there exists 
n0 ∈ N such that F (n0) > 0 for all n ≥ n0. For x > 2 and 1 < k < h, let

Sh
0,k(x) := {n ∈ Sh(x) : ωk(n) = 0}.

Note that

Sh
0,k(x) ⊇ Sk(x).

Since |Sk(x)| 
 x/ζ(k), thus |Sh
0,k(x)| 
 x/ζ(k). In particular, the set of n ∈ Sh(x) for 

which F (n) > 0 and ωk(n) = 0 is not o(x). For all such n, notice that the inequality

|ωk(n) − F (n)| > F (n)
2 (49)

is satisfied. Thus, we deduce that ωk(n) does not have normal order F (n) when F (n) is 
not identically zero.

Next, we work with the case when F (n) is identically 0. Let

Sh
1,k(x) := {n ∈ Sh(x) : ωk(n) = 1}.

Using Lemma 2.6 for the single prime p = 2, we deduce

|Sh
1,k(x)| ≥

∑
n∈Sh(x)

pk‖n for exactly one prime p≤x1/k

1

≥
∑

n∈Sk(x/2k)
(n,2)=1

1


 2k − 2k−1

2k(2k − 1)
x

ζ(k) .
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Thus, the set of n ∈ Sh(x) for which F (n) > 0 and ωk(n) = 1 is not o(x). Also, for all 
such n, inequality (49) is satisfied. Thus, ωk(n) does not have normal order F (n) when 
F (n) is identically zero. This completes the proof. �
Proof of Theorem 1.8. We first assume that F (n) is not identically 0. Thus, there exists 
n0 ∈ N such that F (n0) > 0 for all n ≥ n0. For x > 2 and k > h, let

Nh
0,k(x) := {n ∈ Nh(x) : ωk(n) = 0}.

Note that

Nh
0,k(x) ⊇ (Nh ∩ Sk)(x).

Moreover, using Lemma 2.8 for the prime p = 2, we obtain

|(Nh ∩ Sk)(x)| ≥
∑
n≤x

n∈Nh∩Sk,(n,2)=1

1


 1 − 2−1/h

1 − 2−1/h + 2−1 − 2−k/h
ηh,kx

1/h.

Thus, the set of n ∈ Nh(x) for which F (n) > 0 and ωk(n) = 0 is not o(x1/h). Also, for all 
such n, inequality (49) is satisfied. Thus, ωk(n) does not have normal order F (n) when 
F (n) is not identically 0.

Next, we work with the case when F (n) is identically 0. Let

Nh
1,k(x) := {n ∈ Nh(x) : ωk(n) = 1}.

Using Lemma 2.7 for the single prime p = 2, we deduce

|Nh
1,k(x)| ≥

∑
n∈Nh(x)

pk‖n for exactly one prime p≤x1/k

1

≥
∑

n≤x/2k

n∈Nh∩Sk,(n,2)=1

1


 1 − 2−1/h

2k/h(1 − 2−1/h + 2−1 − 2−k/h)
ηh,kx

1/h,

where ηh,k is given by (16). Therefore, the set of n ∈ Nh(x) for which F (n) > 0 and 
ωk(n) = 1 is not o(x1/h). Also, for all such n, inequality (49) is satisfied. Thus, ωk(n)
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does not have normal order F (n) when F (n) is identically zero. This completes the 
proof. �

In this work, we establish that ω1(n) has normal order log logn and also satisfies the 
Erdős-Kac theorem over h-free. Similarly, ωh has normal order log logn and also satisfies 
the Erdős-Kac theorem over h-full numbers. We also proved that ωk(n) with 1 < k < h

do not have normal order over h-free numbers and ωk(n) with k > h do not have normal 
order over h-full numbers. These results can be generalized to a general number field. 
The authors have been working on this and will report their findings in a future article. 
Note that the function field analog of this research has been studied by Gómez and 
Lalín [7].
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